

EX 2025 Parker Bohn III Jr. Scholarship Tourney

Oil Pattern Distance **Forward Oil Total Tank Configuration**

42 15.6 mL **A Only**

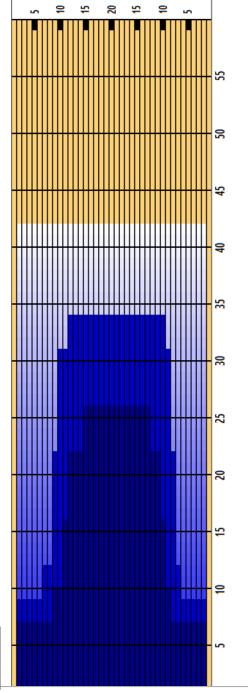
Reverse Brush Drop Reverse Oil Total Tank A Conditioner

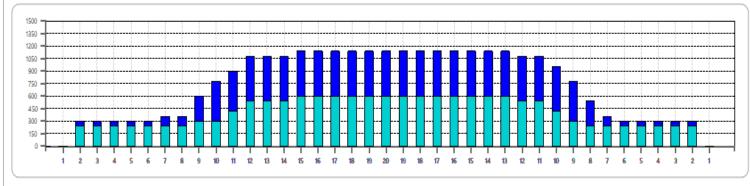
36 13.26 mL **KEGEL**

Oil Per Board Volume Oil Total Tank B Conditioner

60 ul 28.86 mL **KEGEL**

START STOP LOADS SPEED BUFFER TANK CROSSED START END FEET T.OIL 1 2L 2R 4 18 3 A 148 0.0 7.6 7.6 8880 2 9L 9R 1 18 3 A 23 7.6 10.1 2.5 1380 3 11L 10R 2 22 3 A 40 10.1 16.3 6.2 2400 4 12L 11R 2 22 3 A 36 16.3 22.5 6.2 2160 5 15L 13R 1 26 3 A 13 22.5 26.1 3.6 780 6 2L 2R 0 26 3 A 0 26.1 42.0 15.9 0	_											
2 9L 9R 1 18 3 A 23 7.6 10.1 2.5 1380 3 11L 10R 2 22 3 A 40 10.1 16.3 6.2 2400 4 12L 11R 2 22 3 A 36 16.3 22.5 6.2 2160 5 15L 13R 1 26 3 A 13 22.5 26.1 3.6 780		START	STOP	LOADS	SPEED	BUFFER	TANK	CROSSED	START	END	FEET	T.OIL
3 11L 10R 2 22 3 A 40 10.1 16.3 6.2 2400 4 12L 11R 2 22 3 A 36 16.3 22.5 6.2 2160 5 15L 13R 1 26 3 A 13 22.5 26.1 3.6 780	1	2L	2R	4	18	3	Α	148	0.0	7.6	7.6	8880
4 12L 11R 2 22 3 A 36 16.3 22.5 6.2 2160 5 15L 13R 1 26 3 A 13 22.5 26.1 3.6 780	2	9L	9R	1	18	3	Α	23	7.6	10.1	2.5	1380
5 15L 13R 1 26 3 A 13 22.5 26.1 3.6 780	3	11L	10R	2	22	3	Α	40	10.1	16.3	6.2	2400
	4	12L	11R	2	22	3	Α	36	16.3	22.5	6.2	2160
E 21 28 0 26 3 A 0 261 42 0 15 Q 0	5	15L	13R	1	26	3	Α	13	22.5	26.1	3.6	780
0 2L 2K 0 20 3 K 0 20.1 42.0 13.9 0	6	2L	2R	0	26	3	Α	0	26.1	42.0	15.9	0


1 2L 2R 0 30 3 A 0 42.0 34.0 -8.0 2 12L 10R 1 22 3 A 19 34.0 30.9 -3.1 114 3 10L 9R 3 22 3 A 66 30.9 21.6 -9.3 396 4 9L 8R 3 22 3 A 72 21.6 12.3 -9.3 432 5 7L 7R 1 22 3 A 27 12.3 9.2 -3.1 162 6 2L 2R 1 22 3 A 37 9.2 6.1 -3.1 222												
2 12L 10R 1 22 3 A 19 34.0 30.9 -3.1 114 3 10L 9R 3 22 3 A 66 30.9 21.6 -9.3 396 4 9L 8R 3 22 3 A 72 21.6 12.3 -9.3 432 5 7L 7R 1 22 3 A 27 12.3 9.2 -3.1 162 6 2L 2R 1 22 3 A 37 9.2 6.1 -3.1 222		START	STOP	LOADS	SPEED	BUFFER	TANK	CROSSED	START	END	FEET	T.OIL
3 10L 9R 3 22 3 A 66 30.9 21.6 -9.3 396 4 9L 8R 3 22 3 A 72 21.6 12.3 -9.3 432 5 7L 7R 1 22 3 A 27 12.3 9.2 -3.1 162 6 2L 2R 1 22 3 A 37 9.2 6.1 -3.1 222	1	2L	2R	0	30	3	Α	0	42.0	34.0	-8.0	0
4 9L 8R 3 22 3 A 72 21.6 12.3 -9.3 432 5 7L 7R 1 22 3 A 27 12.3 9.2 -3.1 162 6 2L 2R 1 22 3 A 37 9.2 6.1 -3.1 222	2	12L	10R	1	22	3	Α	19	34.0	30.9	-3.1	1140
5 7L 7R 1 22 3 A 27 12.3 9.2 -3.1 162 6 2L 2R 1 22 3 A 37 9.2 6.1 -3.1 222	3	10L	9R	3	22	3	Α	66	30.9	21.6	-9.3	3960
6 2L 2R 1 22 3 A 37 9.2 6.1 -3.1 222	4	9L	8R	3	22	3	Α	72	21.6	12.3	-9.3	4320
	5	7L	7R	1	22	3	Α	27	12.3	9.2	-3.1	1620
	6	2L	2R	1	22	3	Α	37	9.2	6.1	-3.1	2220
7 2L 2R 0 22 3 A 0 6.1 0.0 -6.1	7	2L	2R	0	22	3	Α	0	6.1	0.0	-6.1	0


Cleaner Ratio Main Mix Cleaner Ratio Back End Mix Cleaner Ratio Back End Distance Buffer RPM: 4 = 700 | 3 = 500 | 2 = 200 | 1 = 100

NA NA NA Forward Reverse Combined

Item	3L-7L:18L-18R	8L-12L:18L-18R	13L-17L:18L-18R	18L-18R:17R-13R	18L-18R:12R-8R	18L-18R:7R-3R
Description	Outside:Middle	Middle:Middle	Inside:Middle	MIddle: Inside	Middle:Middle	Middle:Outside
Track Zone Ratio	3.65	1.53	1.02	1	1.28	3.65

